Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen‐Rich Graphene‐Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst
نویسندگان
چکیده
Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.
منابع مشابه
Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets
A novel 3D hierarchical nanocomposite of vertically aligned porous FeP nano-wires on reduced graphene oxide is prepared as a demonstration of constructing an efficient hydrogen evolution catalyst. Extension of this nanostructuring strategy to other functional nanocomposites by combining different dimensional nanomaterials is attractive.
متن کاملMicelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production
Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthes...
متن کاملToward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution
Replacement of precious Pt catalyst with cost-effective alternatives would be significantly beneficial for hydrogen production via electrocatalytic hydrogen evolution reaction (HER). All candidates thus far are exclusively metallic catalysts, which suffer inherent corrosion and oxidation susceptibility during acidic proton-exchange membrane electrolysis. Herein, based on theoretical predictions...
متن کاملCoupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution
Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyr...
متن کاملNano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide.
A novel electrocatalyst of layered MoS2 supported on reduced graphene oxide (RGO) decorated with nano-sized tungsten carbide (WC) shows an enhanced catalytic performance in the hydrogen evolution reaction, which could be attributed to the presence of a conductive and electrocatalytically-active nano-WC dispersant and the positive synergistic effect between nano-WC/RGO and layered MoS2.
متن کامل